Publications on Smart Manufacturing System

Publications

Journal Papers

  1. R. Tai, L. Lin, R. Su. (2024). On decidability of existence of fortified super-visors against covert actuator attackers. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2023.3329341.

  2. R. Tai, L. Lin, Y. Zhu, R. Su. (2023). Synthesis of the supremal covert attacker against unknown supervisors by using observations. IEEE Transactions on Automatic Control, vol. 68, no. 6, pp. 3453-3468.

  3. Y. Zhu, L. Lin, R. Tai, R. Su. (2023). Overview of networked supervisory control with imperfect communication channels. Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 33, no. 1, pp. 25-61.

  4. R. Tai, L. Li, Y. Zhu, R. Su. (2023). Privacy-preserving co-synthesis against sensor-actuator eavesdropping intruder. Automatica, vol. 150, pp. 110860.

  5. R. Tai, L. Lin, R. Su. (2023). Synthesis of optimal covert sensor-actuator attackers for discrete event systems. Automatica, vol. 151, pp. 110910.

  6. B. A. Brandin, R. Su, L. Lin. (2023). Supervisory control of time-interval discrete event systems. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2023.3331564.

  7. H. Fan, R. Su. (2022). Mathematical modelling and heuristic approaches to job-shop scheduling problems with conveyor-based continuous ow transporters. Computers & Operations Research, vol. 148, pp. 105998.

  8. R. Tai, L. Lin, R. Su. (2022). Identification of system vulnerability under a smart sensor attack via attack model reduction. IEEE Control Systems Letters, vol. 6, pp. 2948-2953.

  9. L. Lin, Y. Zhu, R. Tai, Simon Ian Ware, R. Su.(2022) “ Networked Supervisor Synthesis Against Lossy Channels with Bounded Network Delays as Non-Networked Synthesis.” Automatica, vol. 142, no. 1, pp. 110279.

  10. R. Tai, L. Lin, Y. Zhu, Simon Ian Ware, R. Su.(2022) “A New Modeling Framework for Networked Discrete-Event Systems.” Automatica, vol. 138, pp. 110139.

  11. L. Lin**, R. Tai*, Y. Zhu*, R. Su. (2021). Observation-Assisted Heuristic synthesis of covert attackers against unknown supervisors. Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 32, pp. 495-520.

  12. L. Lin, R. Su (2021). “Synthesis of covert actuator and sensor attackers.” Automatica, vol. 130, pp. 109714.

  13. F. J. Yang, N. Q Wu, Y. Qiao, R. Su, C. Zhang. (2021). Wafer sojourn time fluctuation analysis for time-constrained dual-arm multi-cluster tools with activity time variation. Inter-national Journal of Computer Integrated Manufacturing, vol. 34, no. 7-8, pp. 734-751.

  14. L. Lin, Y. Zhu, R. Su (2020). “Synthesis of covert actuator attackers for free.” Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 30, pp. 561-577, DOI: 10.1007/s10626-020-00312-2.

  15. F. J. Yang, N. Q. Wu, Y. Qiao, M. C. Zhou, R. Su, (2020). “Modeling and Optimal Scheduling of Wafer- residency-time Constrained Cluster Tools via Petri Nets and Linear Programming,” IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 50, no. 3, pp. 871-883..

  16. F. J. Yang, Y. Qiao, K. Z. Gao, N. Q. Wu, Y. T. Zhu, I. W. Simon, R. Su, (2020). "Efficient Approach to Scheduling of Transient Processes for Time-Constrained Single-Arm Cluster Tools with Parallel Chambers," IEEE Transactions on Automation Science and Engineering. vol. 50, no. 10, pp. 3646-3657.

Conference Papers

  1. Tai R., Lin L.,Su R. (2023). Supervisor fortification against covert actuator attacks. 62nd IEEE Conference on Decision and Control, Singapore.

  2. Tai R., Lin L.,Su R., Sam Ge. S. (2023). Covert attack synthesis for networked discrete-event systems. 22nd IFAC World Congress, pp. 1-6, Yokohama.

  3. Hu Z., Zhang H., Guo y., Yao J., Li J., Su R. (2023). Abnormal automated guided vehicles detection for fleet management systems: a reputation-based distributed velocity estimation approach. 10th IEEE International Conference on Cybernetics and Intelligent Systems, Penang.

  4. Zhu Y., Lin L., Tai R., Su R. (2022). Distributed control of timed networked system against communication delays. 17th IEEE International Conference on Control & Automation, pp. 1008-1013, Naples.

  5. Lin L., Tai R., Zhu Y., R. Su. (2021). Heuristic synthesis of covert attackers against unknown supervisors. 60th IEEE Conference on Decision and Control, pp. 7003-7008, Austin. [Invited Paper]

  6. Brandin B. A., Su R., Lin L. (2020). Supervisory control of time-interval discrete event systems. 15th IFAC Workshop on Discrete Event Systems, IFAC PapersOnLine, 53(4), pp. 217-222, Rio de Janeiro. [Invited Paper]

  7. Zhu, Y., Lin, L., & Su, R. (2020).“ Supervisor Synthesis for Networked Discrete Event Systems with Delays against Non-FIFO Communication Channels. ” Conference on 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV 2020), pp. 1027-1032, Shenzhen. [Invited Paper]

  8. Lin, L., Zhu, Y., & Su, R. (2020).“ A Topological Approach for Computing Supremal Sublanguages. ” Conference on 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV 2020), pp.1015-1019, Shenzhen. [Invited Paper]

  9. Lin L., Su R. (2020). Synthesis of covert actuator and sensor attackers as supervisor synthesis. 15th IFAC Workshop on Discrete Event Systems, IFAC PapersOnLine, 53(4), pp. 1-6, Rio de Janeiro. [Invited Paper]

  10. Lin L., Su R., Brandin B., Ware S., Zhu Y., (2019). “ Synchronous Composition of Finite Interval Automata. ” 15th IEEE International Conference on Control & Automation (ICCA, 2019), pp. 578-583, Edinburgh.

  11. Lin, L., Zhu, Y., & Su, R. (2018).“ Towards Bounded Synthesis of Resilient Supervisors Against Actuator Attacks. ” Conference on Decision and Control(2019), pp. 7659-7664, Nice. [Invited Paper]

  12. Zhu, Y., Lin, L., Ware, Simon. & Su, R. (2018).“ Supervisor Synthesis for Networked Discrete Event Systems With Communication Delays and Lossy Channels. ” Conference on Decision and Control(2019), pp. 6730-6735, Nice. [Invited Paper]

  13. Zhu, Y., Lin, L., & Su, R. (2018).“ Supervisor Obfuscation Against Actuator Enablement Attack. ” European Control Conference(2019), pp. 1760-1765, Naples. [Invited Paper]

  14. Rashidinejad A., Lin L., Wetzels B., Zhu Y., Reniers M., Su R. (2018). “ Supervisory Control of Discrete-Event Systems under Attacks: An Overview and Outlook. ” European Control Conference(2019), pp. 1732-1739, Naples. [Invited Paper]

  15. Lin, L., Thuijsman, S., Zhu, Y., Ware, S., Su, R., & Reniers, M. (2018), “ Synthesis of successful actuator attackers on supervisors. ” American Control Conference (2019), pp. 5614-5619, Philadelphia.

  16. Ware S., Zhu Y., Yang F., Su R., Lin L. (2018). An efficient method of matrix multiplication for heaps of pieces. Proc. 14th IFAC Workshop on Discrete Event Systems, pp. 206-211, Sorrento Coast.

  17. Yang F., Qiao Y., Gao K., Wu N., Zhu Y., Ware S., Su R., (2018). "Scheduling and Control of Start-up Process for Time-Constrained Single-Arm Cluster Tools with Parallel Chambers," 14th IFAC Workshop on Discrete Event Systems, pp. 251-256, Sorrento Coast.

  18. S. Ware and R. Su, (2017). "An Application of Incremental Scheduling to a Cluster Photolithography Tool," The 20th world congress of the International Federation of Automatic Control (IFAC), 9-14 July 2017,pp. 1137-1143, Toulouse, France.

  19. Lin L., Ware S., Su R., Wonham W.M. (2017). Reductions of distributions and its applications. 2017 American Control Conference, pp. 3848-3853, Seattle.

  20. Deplano D., Ware S., Su R. and Giua A., (2017). "A heuristic algorithm to optimize execution time of multi-robotic path," 13th IEEE International Conference on Control and Automation, pp. 909-914, Ohrid.

  21. Gao K., Sadollah A., Zhang Y., Su R., Li J. (2016). Discrete Jaya algorithm for flexible job shop scheduling problem with new job insertion. Proc. 14th International Conference on Control, Automation, Robotics and Vision, pp. 1-5, Phuket.

  22. Ware S. and Su R.. (2016). Incremental scheduling of discrete event systems. Proc. 13th International Workshop on Discrete Event Systems, pp. 147-152, Xi'an.

  23. Hagebring, F. and Wigström, O. and Lennartson, B. and Ware, S. and Su, R., (2016). “Comparing MILP, CP, and A* for multiple stacker crane scheduling.” Discrete Event Systems (WODES), 2016 IEEE 13th International Workshop: 63-70.

  24. Ware, S. and Su, R., (2016). “Incremental scheduling of discrete event systems.” Discrete Event Systems (WODES), 2016 IEEE 13th International Workshop: 147-152.

  25. Ware, S. and Su, R., (2015). “Progressive time optimal control of reactive systems.” Decision and Control (CDC), 2015 IEEE 54th Annual Conference: 3542-3547.

  26. Ware, S. and Su, R., (2015). “Synthesis time optimal accepting traces using language projection and pruning.” Automation Science and Engineering (CASE), 2015 IEEE International Conference: 1363-1368.

Past Related Publications

Distributed supervisory control

  1. S. Ware and R. Su, (2017). “Time Optimal Synthesis Based Upon Sequential Abstraction and Its Application to Cluster Tools.” IEEE Transactions on Automation Science and Engineering. Volume: 14, Issue: 2, pages: 772-784.

  2. L. Lin, A. Stefanescu, R. Su. (2016). Decomposable sublanguage problem for distributed and parameterized supervisor synthesis. IEEE Transactions on Automatic Control, vol. 61, no. 3, pp. 777-782.

  3. H. Hu, R. Su, Y. Liu, M. Zhou, (2015). Polynomially complex synthesis of distributed supervisors for large scale AMS using Petri nets. IEEE Transactions on Control Systems Technology, vol. 24, no. 5, pp. 1610-1622.

  4. R. Su, J. H. Schuppen, J. E. Rooda, (2012). Maximum permissive coordinated distributed supervisory control of nondeterministic discrete-event systems. Automatica, vol. 48, no. 7, pp. 1237-1247.

  5. R. Su, J. H. Schuppen, J. E. Rooda,, (2010). Model abstraction of nondeterministic finite-state automata in supervisor synthesis. IEEE Transactions on Automatic Control, 55(11), pp. 2527-2541.

  6. R. Su, J. H. Schuppen, J. E. Rooda, A. T. Hofkamp, (2010). Nonconflict check by using sequential automaton abstractions. Automatica, vol. 46, no. 6, pp. 968-978.

  7. R. Su, J. H. Schuppen, J. E. Rooda, (2010). Aggregative synthesis of distributed supervisors based on automaton abstraction. IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1627-1640.

Centralized supervisory control

  1. L. Lin, T. Masopust, W. M. Wonham, R. Su, (2018). “Automatic Generation of Optimal Reductions of Distributions.”IEEE Transactions on Automatic Control, vol. 64, no. 3, pp. 896-911.

  2. L. Lin, A. Stefanescu, W. Wang, R. Su, W. M. Wonham, (2018). “Symbolic reachability analysis and maximally permissive entrance control of globally synchronized templates.” Automatica, 87: 290-300.

  3. R. Su, W. M. Wonham, (2018). “What information really matters in supervisor reduction.” Automatica, vol. 95, pp. 368-377.

  4. R. Su, (2018). “Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations.” Automatica, PII: S0005109818301912, vol. 94, pp. 35-44.

  5. L. Lin, S. Ware, R. Su, W. M. Wonham, (2017). Reduction of distributions: definitions, properties and applications. IEEE Transactions on Automatic Control, accepted (regular paper), DOI: 10.1109/TAC.2017.2692561, April 2017.

  6. L. Lin, S. Ware, R. Su, W. M. Wonham. (2017). Reduction of distributions: definitions, properties and applications. IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5755-5768.

  7. R. Su, W. M. Wonham, (2017). What information really matters in supervisor reduction. Automatica, major revision, March 2017.

Scheduling and optimal supervisory control for flexible manufacturing systems

  1. F. J. Yang, N. Q Wu, L. P. Bai, Y. Qiao, M. C Zhou, R. Su, (2018). "Petri Net-Based Efficient Determination of Optimal Schedule for Transport-dominant Single-Arm Multi-Cluster Tools," IEEE Access, vol. 6, pp. 355-365.

  2. F. J. Yang, K. Z Gao, I. W. Simon, Y. T. Zhu, R. Su, (2018). "Decomposition Methods for Manufacturing System Scheduling: A Survey," IEEE/CAA, vol. 5, no. 2.

  3. F. J. Yang, N. Q. Wu, K. Z. Gao,Y. T. Zhu, R. Su, Y. Qiao, I. W. Simon, (2018). "Efficient Approach to Cyclic Scheduling of Single-arm Cluster Tools with Chamber Cleaning Operations and Wafer Residency Time Constraint," IEEE Transactions on Semiconductor Manufacturing, vol. 31, no. 2, pp. 196-205.

  4. F. J. Yang, N. Q. Wu, Y. Qiao, R. Su, (2018). "Polynomial Approach to Optimal One-wafer Cyclic Scheduling of Treelike Hybrid Multi-Cluster Tools via Petri Nets," IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 270-280. [2021 Hsue-shen Tsien Paper Award].

  5. R. Su, (2015). A polynomial-time algorithm for computing finite-makespan controllable sublanguages. IEEE Transactions on Automatic Control, vol. 60, no. 2, pp. 534-539.

  6. R. Su, (2014). On the complexity of synthesizing a minimum-weighted supervisor under partial observation. Automatica, vol. 50, no. 6, pp. 1725-1729.

  7. R. Su, J. H. van Schuppen, J. E. Rooda, (2012). The synthesis of time optimal supervisors by using heaps-of-pieces. IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 105-118.

  8. R. Su, G. Woeginger, (2011). String execution time for finite languages: max is easy, min is hard. Automatica, vol. 47, no. 10, pp. 2326-2329.

Model-based fault diagnosis

  1. W. Wang, R. Su, L. Lin., (2019). “Deadlock and blocking in isomorphic module systems.” IEEE Transactions on Automatic Control, vol. 64, no. 2, pp. 728-735.

  2. R. Su, (2008). Distributed trace estimation under timing mismatch and channel distortion. IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2409-2414.

  3. R. Su, Chaudron, M.R.V., Lukkien, J.J., (2007). Adaptive runtime fault management for service instances in component-based software applications. IET Software, vol. 1, no. 1, pp.18-28.

  4. J. G. Thistle, Su, R., (2007). On effective computation of supremal local supports. IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1429-1441.

  5. R. Su, W. M. Wonham, (2006). Hierarchical fault diagnosis for discrete-event systems under global consistency. Journal of Discrete-Event Dynamic Systems, vol. 16, no. 1, pp. 39-70.

  6. R. Su, W. M. Wonham, (2005). Global and local consistencies in distributed fault diagnosis for discrete-event systems. IEEE Transactions on Automatic Control, vol. 50, no. 12, pp. 1923-1935